Bitcoin Mining Allocation Binance Research

Bitcoin (BTC)A Peer-to-Peer Electronic Cash System.

Bitcoin (BTC)A Peer-to-Peer Electronic Cash System.
  • Bitcoin (BTC) is a peer-to-peer cryptocurrency that aims to function as a means of exchange that is independent of any central authority. BTC can be transferred electronically in a secure, verifiable, and immutable way.
  • Launched in 2009, BTC is the first virtual currency to solve the double-spending issue by timestamping transactions before broadcasting them to all of the nodes in the Bitcoin network. The Bitcoin Protocol offered a solution to the Byzantine Generals’ Problem with a blockchain network structure, a notion first created by Stuart Haber and W. Scott Stornetta in 1991.
  • Bitcoin’s whitepaper was published pseudonymously in 2008 by an individual, or a group, with the pseudonym “Satoshi Nakamoto”, whose underlying identity has still not been verified.
  • The Bitcoin protocol uses an SHA-256d-based Proof-of-Work (PoW) algorithm to reach network consensus. Its network has a target block time of 10 minutes and a maximum supply of 21 million tokens, with a decaying token emission rate. To prevent fluctuation of the block time, the network’s block difficulty is re-adjusted through an algorithm based on the past 2016 block times.
  • With a block size limit capped at 1 megabyte, the Bitcoin Protocol has supported both the Lightning Network, a second-layer infrastructure for payment channels, and Segregated Witness, a soft-fork to increase the number of transactions on a block, as solutions to network scalability.

https://preview.redd.it/s2gmpmeze3151.png?width=256&format=png&auto=webp&s=9759910dd3c4a15b83f55b827d1899fb2fdd3de1

1. What is Bitcoin (BTC)?

  • Bitcoin is a peer-to-peer cryptocurrency that aims to function as a means of exchange and is independent of any central authority. Bitcoins are transferred electronically in a secure, verifiable, and immutable way.
  • Network validators, whom are often referred to as miners, participate in the SHA-256d-based Proof-of-Work consensus mechanism to determine the next global state of the blockchain.
  • The Bitcoin protocol has a target block time of 10 minutes, and a maximum supply of 21 million tokens. The only way new bitcoins can be produced is when a block producer generates a new valid block.
  • The protocol has a token emission rate that halves every 210,000 blocks, or approximately every 4 years.
  • Unlike public blockchain infrastructures supporting the development of decentralized applications (Ethereum), the Bitcoin protocol is primarily used only for payments, and has only very limited support for smart contract-like functionalities (Bitcoin “Script” is mostly used to create certain conditions before bitcoins are used to be spent).

2. Bitcoin’s core features

For a more beginner’s introduction to Bitcoin, please visit Binance Academy’s guide to Bitcoin.

Unspent Transaction Output (UTXO) model

A UTXO transaction works like cash payment between two parties: Alice gives money to Bob and receives change (i.e., unspent amount). In comparison, blockchains like Ethereum rely on the account model.
https://preview.redd.it/t1j6anf8f3151.png?width=1601&format=png&auto=webp&s=33bd141d8f2136a6f32739c8cdc7aae2e04cbc47

Nakamoto consensus

In the Bitcoin network, anyone can join the network and become a bookkeeping service provider i.e., a validator. All validators are allowed in the race to become the block producer for the next block, yet only the first to complete a computationally heavy task will win. This feature is called Proof of Work (PoW).
The probability of any single validator to finish the task first is equal to the percentage of the total network computation power, or hash power, the validator has. For instance, a validator with 5% of the total network computation power will have a 5% chance of completing the task first, and therefore becoming the next block producer.
Since anyone can join the race, competition is prone to increase. In the early days, Bitcoin mining was mostly done by personal computer CPUs.
As of today, Bitcoin validators, or miners, have opted for dedicated and more powerful devices such as machines based on Application-Specific Integrated Circuit (“ASIC”).
Proof of Work secures the network as block producers must have spent resources external to the network (i.e., money to pay electricity), and can provide proof to other participants that they did so.
With various miners competing for block rewards, it becomes difficult for one single malicious party to gain network majority (defined as more than 51% of the network’s hash power in the Nakamoto consensus mechanism). The ability to rearrange transactions via 51% attacks indicates another feature of the Nakamoto consensus: the finality of transactions is only probabilistic.
Once a block is produced, it is then propagated by the block producer to all other validators to check on the validity of all transactions in that block. The block producer will receive rewards in the network’s native currency (i.e., bitcoin) as all validators approve the block and update their ledgers.

The blockchain

Block production

The Bitcoin protocol utilizes the Merkle tree data structure in order to organize hashes of numerous individual transactions into each block. This concept is named after Ralph Merkle, who patented it in 1979.
With the use of a Merkle tree, though each block might contain thousands of transactions, it will have the ability to combine all of their hashes and condense them into one, allowing efficient and secure verification of this group of transactions. This single hash called is a Merkle root, which is stored in the Block Header of a block. The Block Header also stores other meta information of a block, such as a hash of the previous Block Header, which enables blocks to be associated in a chain-like structure (hence the name “blockchain”).
An illustration of block production in the Bitcoin Protocol is demonstrated below.

https://preview.redd.it/m6texxicf3151.png?width=1591&format=png&auto=webp&s=f4253304912ed8370948b9c524e08fef28f1c78d

Block time and mining difficulty

Block time is the period required to create the next block in a network. As mentioned above, the node who solves the computationally intensive task will be allowed to produce the next block. Therefore, block time is directly correlated to the amount of time it takes for a node to find a solution to the task. The Bitcoin protocol sets a target block time of 10 minutes, and attempts to achieve this by introducing a variable named mining difficulty.
Mining difficulty refers to how difficult it is for the node to solve the computationally intensive task. If the network sets a high difficulty for the task, while miners have low computational power, which is often referred to as “hashrate”, it would statistically take longer for the nodes to get an answer for the task. If the difficulty is low, but miners have rather strong computational power, statistically, some nodes will be able to solve the task quickly.
Therefore, the 10 minute target block time is achieved by constantly and automatically adjusting the mining difficulty according to how much computational power there is amongst the nodes. The average block time of the network is evaluated after a certain number of blocks, and if it is greater than the expected block time, the difficulty level will decrease; if it is less than the expected block time, the difficulty level will increase.

What are orphan blocks?

In a PoW blockchain network, if the block time is too low, it would increase the likelihood of nodes producingorphan blocks, for which they would receive no reward. Orphan blocks are produced by nodes who solved the task but did not broadcast their results to the whole network the quickest due to network latency.
It takes time for a message to travel through a network, and it is entirely possible for 2 nodes to complete the task and start to broadcast their results to the network at roughly the same time, while one’s messages are received by all other nodes earlier as the node has low latency.
Imagine there is a network latency of 1 minute and a target block time of 2 minutes. A node could solve the task in around 1 minute but his message would take 1 minute to reach the rest of the nodes that are still working on the solution. While his message travels through the network, all the work done by all other nodes during that 1 minute, even if these nodes also complete the task, would go to waste. In this case, 50% of the computational power contributed to the network is wasted.
The percentage of wasted computational power would proportionally decrease if the mining difficulty were higher, as it would statistically take longer for miners to complete the task. In other words, if the mining difficulty, and therefore targeted block time is low, miners with powerful and often centralized mining facilities would get a higher chance of becoming the block producer, while the participation of weaker miners would become in vain. This introduces possible centralization and weakens the overall security of the network.
However, given a limited amount of transactions that can be stored in a block, making the block time too longwould decrease the number of transactions the network can process per second, negatively affecting network scalability.

3. Bitcoin’s additional features

Segregated Witness (SegWit)

Segregated Witness, often abbreviated as SegWit, is a protocol upgrade proposal that went live in August 2017.
SegWit separates witness signatures from transaction-related data. Witness signatures in legacy Bitcoin blocks often take more than 50% of the block size. By removing witness signatures from the transaction block, this protocol upgrade effectively increases the number of transactions that can be stored in a single block, enabling the network to handle more transactions per second. As a result, SegWit increases the scalability of Nakamoto consensus-based blockchain networks like Bitcoin and Litecoin.
SegWit also makes transactions cheaper. Since transaction fees are derived from how much data is being processed by the block producer, the more transactions that can be stored in a 1MB block, the cheaper individual transactions become.
https://preview.redd.it/depya70mf3151.png?width=1601&format=png&auto=webp&s=a6499aa2131fbf347f8ffd812930b2f7d66be48e
The legacy Bitcoin block has a block size limit of 1 megabyte, and any change on the block size would require a network hard-fork. On August 1st 2017, the first hard-fork occurred, leading to the creation of Bitcoin Cash (“BCH”), which introduced an 8 megabyte block size limit.
Conversely, Segregated Witness was a soft-fork: it never changed the transaction block size limit of the network. Instead, it added an extended block with an upper limit of 3 megabytes, which contains solely witness signatures, to the 1 megabyte block that contains only transaction data. This new block type can be processed even by nodes that have not completed the SegWit protocol upgrade.
Furthermore, the separation of witness signatures from transaction data solves the malleability issue with the original Bitcoin protocol. Without Segregated Witness, these signatures could be altered before the block is validated by miners. Indeed, alterations can be done in such a way that if the system does a mathematical check, the signature would still be valid. However, since the values in the signature are changed, the two signatures would create vastly different hash values.
For instance, if a witness signature states “6,” it has a mathematical value of 6, and would create a hash value of 12345. However, if the witness signature were changed to “06”, it would maintain a mathematical value of 6 while creating a (faulty) hash value of 67890.
Since the mathematical values are the same, the altered signature remains a valid signature. This would create a bookkeeping issue, as transactions in Nakamoto consensus-based blockchain networks are documented with these hash values, or transaction IDs. Effectively, one can alter a transaction ID to a new one, and the new ID can still be valid.
This can create many issues, as illustrated in the below example:
  1. Alice sends Bob 1 BTC, and Bob sends Merchant Carol this 1 BTC for some goods.
  2. Bob sends Carols this 1 BTC, while the transaction from Alice to Bob is not yet validated. Carol sees this incoming transaction of 1 BTC to him, and immediately ships goods to B.
  3. At the moment, the transaction from Alice to Bob is still not confirmed by the network, and Bob can change the witness signature, therefore changing this transaction ID from 12345 to 67890.
  4. Now Carol will not receive his 1 BTC, as the network looks for transaction 12345 to ensure that Bob’s wallet balance is valid.
  5. As this particular transaction ID changed from 12345 to 67890, the transaction from Bob to Carol will fail, and Bob will get his goods while still holding his BTC.
With the Segregated Witness upgrade, such instances can not happen again. This is because the witness signatures are moved outside of the transaction block into an extended block, and altering the witness signature won’t affect the transaction ID.
Since the transaction malleability issue is fixed, Segregated Witness also enables the proper functioning of second-layer scalability solutions on the Bitcoin protocol, such as the Lightning Network.

Lightning Network

Lightning Network is a second-layer micropayment solution for scalability.
Specifically, Lightning Network aims to enable near-instant and low-cost payments between merchants and customers that wish to use bitcoins.
Lightning Network was conceptualized in a whitepaper by Joseph Poon and Thaddeus Dryja in 2015. Since then, it has been implemented by multiple companies. The most prominent of them include Blockstream, Lightning Labs, and ACINQ.
A list of curated resources relevant to Lightning Network can be found here.
In the Lightning Network, if a customer wishes to transact with a merchant, both of them need to open a payment channel, which operates off the Bitcoin blockchain (i.e., off-chain vs. on-chain). None of the transaction details from this payment channel are recorded on the blockchain, and only when the channel is closed will the end result of both party’s wallet balances be updated to the blockchain. The blockchain only serves as a settlement layer for Lightning transactions.
Since all transactions done via the payment channel are conducted independently of the Nakamoto consensus, both parties involved in transactions do not need to wait for network confirmation on transactions. Instead, transacting parties would pay transaction fees to Bitcoin miners only when they decide to close the channel.
https://preview.redd.it/cy56icarf3151.png?width=1601&format=png&auto=webp&s=b239a63c6a87ec6cc1b18ce2cbd0355f8831c3a8
One limitation to the Lightning Network is that it requires a person to be online to receive transactions attributing towards him. Another limitation in user experience could be that one needs to lock up some funds every time he wishes to open a payment channel, and is only able to use that fund within the channel.
However, this does not mean he needs to create new channels every time he wishes to transact with a different person on the Lightning Network. If Alice wants to send money to Carol, but they do not have a payment channel open, they can ask Bob, who has payment channels open to both Alice and Carol, to help make that transaction. Alice will be able to send funds to Bob, and Bob to Carol. Hence, the number of “payment hubs” (i.e., Bob in the previous example) correlates with both the convenience and the usability of the Lightning Network for real-world applications.

Schnorr Signature upgrade proposal

Elliptic Curve Digital Signature Algorithm (“ECDSA”) signatures are used to sign transactions on the Bitcoin blockchain.
https://preview.redd.it/hjeqe4l7g3151.png?width=1601&format=png&auto=webp&s=8014fb08fe62ac4d91645499bc0c7e1c04c5d7c4
However, many developers now advocate for replacing ECDSA with Schnorr Signature. Once Schnorr Signatures are implemented, multiple parties can collaborate in producing a signature that is valid for the sum of their public keys.
This would primarily be beneficial for network scalability. When multiple addresses were to conduct transactions to a single address, each transaction would require their own signature. With Schnorr Signature, all these signatures would be combined into one. As a result, the network would be able to store more transactions in a single block.
https://preview.redd.it/axg3wayag3151.png?width=1601&format=png&auto=webp&s=93d958fa6b0e623caa82ca71fe457b4daa88c71e
The reduced size in signatures implies a reduced cost on transaction fees. The group of senders can split the transaction fees for that one group signature, instead of paying for one personal signature individually.
Schnorr Signature also improves network privacy and token fungibility. A third-party observer will not be able to detect if a user is sending a multi-signature transaction, since the signature will be in the same format as a single-signature transaction.

4. Economics and supply distribution

The Bitcoin protocol utilizes the Nakamoto consensus, and nodes validate blocks via Proof-of-Work mining. The bitcoin token was not pre-mined, and has a maximum supply of 21 million. The initial reward for a block was 50 BTC per block. Block mining rewards halve every 210,000 blocks. Since the average time for block production on the blockchain is 10 minutes, it implies that the block reward halving events will approximately take place every 4 years.
As of May 12th 2020, the block mining rewards are 6.25 BTC per block. Transaction fees also represent a minor revenue stream for miners.
submitted by D-platform to u/D-platform [link] [comments]

51% attacks are morally justifiable

In this short post I want to set out my case for the moral justifiability of 51% attacks against proof of work cryptocurrencies. In the past, a 51% attack was a theoretical construct that most people didn´t seem to think would be practically achievable or lucrative. This has now changed, as hashpower can be rented on sites like Nicehash and Mining Rig Rentals for a few hours at a time. The attack delivers the attacker two prominent opportunities:
-You can orphan blocks of ¨legitimate¨ miners. This essentially means that whatever work was produced by legitimate miners during your attack became worthless. Mine a secret chain of two hours worth of blocks, release it and you orphaned 2 hours worth of blocks by your competitors. By the time most of the miners have noticed their blocks were orphaned in an attack, their nodes will have been automatically mining on your own chain for a while and it will be too late for them to do anything about it. The amount of money they lost would be equivalent to the amount you had to spend to produce your chain. Because mining is an industry with tight margins, the economic impact on these miners can be very big. The cost may be sufficient in case of a very long attack, to persuade them to quit their endeavor and get a real job.
-The more important opportunity is that you´re able to double spend your coins. This is potentially, incredibly lucrative. How lucrative it is tends to depend primarily on the inflation rate of a cryptocurrency. A low inflation rate means relatively little ¨work¨ is done to maintain the security of the system. A high inflation rate on the other hand, turns the cryptocurrency into a very poor long-term investment. As a consequence, most cryptocurrencies face declining inflation rates, that delay the problem of their ultimately unsustainability into the future. The bank of international settlements explains this issue here.
When it comes to the moral justification of a 51% attack, we first have to ask ourselves why proof of work is morally unjustifiable. There are two main reasons for this:
-Proof of work has an enormous environmental impact, that ensures future generations will have to deal with the dramatic consequences of climate change. There is no proper justification for this environmental impact, as it delivers no clear benefits over existing payment systems other than the ability to carry out morally unjustifiable actions like blackmail.
-Proof of work is fundamentally unsustainable, because of the economic burden it places on participants in cryptocurrency schemes. Cryptocurrencies can´t produce wealth out of thin air. The people who get rich from a cryptocurrency becomes rich, due to the fact that other people step in later. In this sense we´re dealing with a pyramid scheme, but the difference from regular pyramid schemes lies in the fact that huge sums of wealth are not merely redistributed, but destroyed, to sustain the scheme. The cost of the work to sustain the scheme is bigger than you might expect, because the reality is that relatively little money has entered bitcoin. JP Morgan claims that for the crypto assets at large, a fiat amplifier of 117.5 is present, as a purported $2 billion in net inflow pushed Bitcoin’s market capitalization from $15 billion to $250 billion. You have to consider that the Digiconomist estimates that $2.6 billion dollar leaves the Bitcoin scheme on an annual basis, in the form of mining costs to sustain Bitcoin. The vast majority of retail customers who entered this scheme ended up losing money from it. In some cases this lead to suicides.
The fact that proof of work is morally unjustifiable doesn´t directly lead to a moral justification for a 51% attack. After all a sane society would use government intervention to eliminate the decentralized ponzi schemes that are cryptocurrencies. There are a few things that need to be considered however:
-Governments have so far failed in their responsibility to address the cryptocurrency schemes. Instead you tend to see officials insist that proof of work might suck and most cryptocurrency is a scam, but ¨blockchain technology¨ will somehow change the world for the better. Most libertarians who saw these schemes emerge insisted that it´s stupid to participate in them because the government would eventually ban them and round up the people who participated in them. This didn´t happen because of the logistical difficulty of suppressing these schemes (anyone with an internet connection can set one up) as well as the fact that suppressing them would lend credence to the anti-government anarcho-capitalist ideology on which these schemes are based. Goverments might say ¨these schemes facilitate crime, ruin the environment and redistribute wealth from naive individuals to scammers¨, but anarcho-capitalists would insist that governments have grown so tyrannical that they want to ban you from exchanging numbers on computers.
-Because cryptocurrency is fundamentally an online social arrangement, governments have very limited influence over the phenomenon. Binance seeks to become a stateless organization, not subject to the jurisdiction of any particular government. Just as with regular money laundering and tax evasion that hides in small nations that can earn huge sums of money by facilitating these practises, governments are dependent on the actions of individuals to address these practices. Whistleblowers released the panama papers and the tax evasion by German individuals through Swiss bank accounts. Through such individuals, the phenomenon could be properly addressed. In a similar manner, cryptocurrency schemes will need to be addressed through the actions of individuals who recognize the damage these schemes cause to the fabric of society.
-The very nature of a 51% attack means that it primarily punishes those who set up and facilitate the cryptocurrency scheme in the first place. The miners who pollute our environment to satiate their own greed are bankrupted by the fact that their blocks are orphaned. The exchange operators are bankrupted due to double-spend attacks against the scams that they facilitate. When this happens, the cryptocurrency in question should lose value, which then destroys the incentive to devote huge sums of electricity to it.
Finally, there´s the question of whether 51% attacks are viable as a response to cryptocurrency. There´s the obvious problem you run into, that the biggest and oldest scams are the most difficult to shut down. In addition, cryptocurrencies that fell victim to an attack tend to move towards a checkpoint system. However, there are a few things that need to be considered here:
-51% attacks against small cryptocurrencies might not have a huge impact, but their benefit is nonetheless apparent. Most of the new scams don´t require participants to mine, instead the new schemes generally depend on ¨staking¨. If people had not engage in 51% attacks, the environmental impact would have been even bigger now.
-51% attacks against currencies that implement checkpointing are not impossible, if the checkpoints are decentrally produced. What happens in that case is a chain split, as long as the hostile chain is released at the right time. This would mean that different exchanges may get stuck on different forks, which would still allow people to double spend their cryptocurrency.
-There are other attacks that can be used against proof of work cryptocurrencies. The most important one is the block withholding attack. It´s possible for people who dislike a cryptocurrency to join a pool and to start mining. However, whenever the miner finds a valid solution that would produce a block, he fails to share the solution with the pool. This costs money for the pool operator, but it can be lucrative for the actor if he also operates a competing pool himself. In the best case it leads to miners moving to his pool, which then potentially allows him to execute a 51% attack against the cryptocurrency.
-It´s possible to put up a 51% attack bounty, allowing others to do the work for you. This works as following. You make transaction A : 100 bitcoin to exchange X, for a fee of 0.001 BTC. Once this transaction has been included in a block, you immediately broadcast a conflicting transaction with another node: You´ŕe sending those 100 bitcoin to your own wallet, but you´re also including a 50 bitcoin fee for the miners. The miners now have a strong incentive to disregard the valid chain and to start mining a new chain on an older block that can still include your conflicting transaction. Provided that pool operators are rational economic agents, they should grab the opportunity.
-Selfish mining in combination with a Sybil attack allows someone to eclipse the rest of the network, while controlling less than 51% of the hashrate. Your malicious nodes will simply refuse to propagante blocks of your competitors, thereby giving you more time to release your own block. Selfish mining will always be possible with 33% of the hashrate and as far as I can tell there are no pathways known currently to make the scheme impossible for people with 25% of the hashrate. This potentially makes a 51% attacks lucrative without having to carry out double-spend attacks against exchanges. Although double spending is a form of theft, it´s not clear to me whether a selfish mining attack would get you into legal trouble or not.

Conclusion:

The dreaded 51% attack is a morally justifiable and potentially lucrative solution to the Nakamoto scheme.
submitted by milkversussoy to Buttcoin [link] [comments]

LiteCoin Hash Crash - CryptoCurrency Mining Difficulty Log Jan 23 2020 Bitcoin Ethereum Monero Binance JP Morgan’s Crypto Unlikely To Pose Immediate Threat To SWIFT Or Bloomberg is BULLISH on BITCOIN Says $12K Soon & Binance Acquires Crypto Debit Card Swipe Mining pools - bitcoin mining pools: how to generate ... Bitcoin Explained Episode 4: Bitcoin Mechanics, Decentralized Consensus, mining rewards Muir Glacier Difficulty Bomb Delay! Crypto Miners Difficulty Log Dec 11 2019 . Bitcoin Ethereum Illegal Crypto Mining, Litecoin Interest Rate, Billionaire Defi, Privacy In Danger & Bitcoin Ponzi BITCOIN PRICE OVER $16000  DIFFICULTY CHANGED! BITCOIN Mining Difficulty Increases - Grayscale BTC Trust - Goldman Sachs Crypto Team - Poloniex

The decrease in the mining profitabilities of both cryptocurrencies, expressed by daily total mining rewards divided by difficulty, is mainly explained by the increasing progress of available ASIC mining machinery. Meanwhile, June-July 2018’s higher mining reward-to-difficulty could be explained by a sudden spike in transaction fees on the Bitcoin blockchain (see chart 3), which led to a ... What Is Bitcoin Mining. Simply explained, mining is the process of adding blocks to the chain. Block is a data unit that stores a certain number of transactions. The number of transactions depends on the block size — the bigger is the block, the more information it contains. You can see a block as a page in a distributed ledger: if you rip it off, the whole story will fall apart. It’s ... Bitcoin’s difficulty target is a 256-bit number that is adjusted every 2016 blocks (~2 weeks) based on the time it took to mine the previous 2016 blocks. The difficulty algorithm attempts to produce a block roughly every ten minutes and is proportionately modified by Bitcoin clients every two weeks to the amount of time higher or lower than it took to mine the previous 2016 blocks. The ... Bitcoin Mining Explained: Key Functions. In order to start from scratch, one is best introduced to the matter of Bitcoin mining through its primary functions. As mentioned in the introduction above, this process serves to validate the Bitcoin transactions on the blockchain. Simply put, if Sally wants to send 3 BTC to John, she would do so by entering John’s e-wallet address and sending the ... Bitcoin Mining Explained: How Does Bitcoin Mining Work? Above is an excerpt from the Bitcoin whitepaper, which explains the immutability of a block after Proof-of-Work. Simply put, the network cannot be “rolled back” and otherwise compromised. While reading this, it’s extremely important to understand that Bitcoin and Ethereum are completely separate blockchain networks and beasts, and ... 2. The difficulty in mining. To preserve the value of bitcoin only a limited number of coins can be mined within a specific time frame. That is why the more bitcoins in circulation, the more the difficulty in mining. And the higher the rate of difficulty, the less successful bitcoin mining is for miners. 3. Electricity rate Bitcoin mining difficulty and computing power are ... This sum should allow miners to cover the costs of their infrastructure and make a profit . Obviously, the price of electricity is the sinews of war, a decisive variable for the profitability of miners. Although this reward has declined , it has not scared off the miners. This new difficulty record shows that bitcoin mining activity remains ...

[index] [15541] [6435] [23426] [4740] [19861] [18666] [10999] [3718] [15000] [2427]

LiteCoin Hash Crash - CryptoCurrency Mining Difficulty Log Jan 23 2020 Bitcoin Ethereum Monero

#Mining #BitCoin #Cryptocurrency Welcome to the 12th episode of CCMDL , January 23 2020 We go over talk a little about the difficulty of Ethereum , Bitcoin, Monero & LiteCoins difficulty for mining. BITCOIN Mining Difficulty Increases - Grayscale BTC Trust - Goldman Sachs Crypto Team - Poloniex Thinking Crypto. Loading... Unsubscribe from Thinking Crypto? Cancel Unsubscribe. Working ... But, Binance has overtly claimed that this might not be the case. But first, here’s a ditty about JP Morgan’s first notable crypto-centric product. Per comments from Umar Farooq, the Wall ... Bloomberg released a July 2020 Crypto outlook report named "A Resting Bitcoin Bull" outlining that they are bullish on Bitcoin and expect a $12,000 price target in the short term. Here are the ... #Mining #Ethereum #Cryptocurrency Welcome to the 6th episode of CMDL , December 11, 2019. We go over talk a little about the Muir Glacier Difficulty Bomb Ethereum , Bitcoin, Monero & LiteCoins ... In this video I will give an overview of what happens when a bitcoin transaction is executed. How does the transaction end up in the block chain? GET STARTED WITH CRYPTOCURRENCIES TODAY Sign up ... mining pools - bitcoin & cryptocurrency mining pools explained best mining pools pps vs pplns. - mining pool hub. Bitcoin Mining Pools Explained and Review... My Second Channel: https://www.youtube.com/channel/UCvXjP6h0_4CSBPVgHqfO-UA ----- Supp... 2017 Bitcoin Mining at Scale ... Mining Difficulty and Analysis - Duration: 6:29. Cryptocurrency Investments 8,273 views. 6:29. Bitcoin Trading for Beginners (A Guide in Plain English) - Duration ...

https://youtube-binaryoption.forexoptions.website